Consider the function y(x)=2x2+4x2, (x1). Determine the inverse function x(y).
x(y)=18+2y.
The inverse function of y(x) cannot be determined.
x(y)=1+8+2y.
x(y)=1±8+2y.
Consider the function y(x)=2x2+4x2, (x1). Determine the inverse function x(y).
Antwoord 1 correct
Correct
Antwoord 2 optie
x(y)=1+8+2y.
Antwoord 2 correct
Fout
Antwoord 3 optie
x(y)=1±8+2y.
Antwoord 3 correct
Fout
Antwoord 4 optie
The inverse function of y(x) cannot be determined.
Antwoord 4 correct
Fout
Antwoord 1 optie
x(y)=18+2y.
Antwoord 1 feedback
Correct: We can rewrite y=2x2+4x2 by the use of the Discriminant criterion (()):
y=2x2+4x20=2x2+4x2yx()=4±4242(2y)22=4±168(2y)4=4±32+8y4=4±48+2y4=1±128+2y.
Since it is given that x1, we know that the inverse function is equal to
x(y)=1128+2y.

Go on.
Antwoord 2 feedback
Wrong: Consider the domain of y(x).

See Example 2.
Antwoord 3 feedback
Wrong: The inverse function has only one output, not two. Consider the domain of y(x).

See Example 2.
Antwoord 4 feedback
Wrong: It is possible to determine the inverse function if you use the Discriminant criterion.

See Example 2.