Consider the function y(x)=2x2+4x−2, (x≤−1). Determine the inverse function x(y).
Antwoord 1 correct
Correct
Antwoord 2 optie
x(y)=−1+√8+2y.
Antwoord 2 correct
Fout
Antwoord 3 optie
x(y)=−1±√8+2y.
Antwoord 3 correct
Fout
Antwoord 4 optie
The inverse function of y(x) cannot be determined.
Antwoord 4 correct
Fout
Antwoord 1 optie
x(y)=−1−√8+2y.
Antwoord 1 feedback
Correct: We can rewrite y=2x2+4x−2 by the use of the Discriminant criterion ((∗)):
y=2x2+4x−20=2x2+4x−2−yx(∗)=−4±√42−4⋅2⋅(−2−y)2⋅2=−4±√16−8(−2−y)4=−4±√32+8y4=−4±√4√8+2y4=−1±12√8+2y.
Since it is given that x≤−1, we know that the inverse function is equal to
x(y)=−1−12√8+2y.
Go on.
y=2x2+4x−20=2x2+4x−2−yx(∗)=−4±√42−4⋅2⋅(−2−y)2⋅2=−4±√16−8(−2−y)4=−4±√32+8y4=−4±√4√8+2y4=−1±12√8+2y.
Since it is given that x≤−1, we know that the inverse function is equal to
x(y)=−1−12√8+2y.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: The inverse function has only one output, not two. Consider the domain of y(x).
See Example 2.
See Example 2.
Antwoord 4 feedback
Wrong: It is possible to determine the inverse function if you use the Discriminant criterion.
See Example 2.
See Example 2.