Which of the following functions is not a Cobb-Douglas function?

$z(x,y) = 5x^{-\tfrac{1}{2}}y^{\tfrac{3}{2}}$.

$z(x,y) = 5x^{\tfrac{1}{2}}y^{\tfrac{1}{2}} - 3x^{\tfrac{1}{2}}y^{\tfrac{1}{2}}$.

$z(x,y) = \sqrt{2}x^{0.1}y^{0.9}$.

$z(x,y) = \sqrt[4]{16xy^3}$.

Which of the following functions is not a Cobb-Douglas function?

Antwoord 1 correct
Correct
Antwoord 2 optie

$z(x,y) = 5x^{\tfrac{1}{2}}y^{\tfrac{1}{2}} - 3x^{\tfrac{1}{2}}y^{\tfrac{1}{2}}$.

Antwoord 2 correct
Fout
Antwoord 3 optie

$z(x,y) = \sqrt{2}x^{0.1}y^{0.9}$.

Antwoord 3 correct
Fout
Antwoord 4 optie

$z(x,y) = \sqrt[4]{16xy^3}$.

Antwoord 4 correct
Fout
Antwoord 1 optie

$z(x,y) = 5x^{-\tfrac{1}{2}}y^{\tfrac{3}{2}}$.

Antwoord 1 feedback

Correct: $z(x,y) = 5x^{-\tfrac{1}{2}}y^{\tfrac{3}{2}}$ can be rewritten to the form $k{x^\alpha}y^{1-\alpha}$, with $k>0$. However, $\alpha = -\tfrac{1}{2} < 0$.

Go on.

Antwoord 2 feedback

Wrong: $z(x,y)$ can be written in the right form:
$$z(x,y) = 5x^{\tfrac{1}{2}}y^{\tfrac{1}{2}} - 3x^{\tfrac{1}{2}}y^{\tfrac{1}{2}} = 2x^{\tfrac{1}{2}}y^{\tfrac{1}{2}}.$$
Hence, $z(x,y)$ is a Cobb-Douglas function with $k=2$ and $\alpha=\tfrac{1}{2}$.

See Cobb-Douglas functions.

Antwoord 3 feedback

Wrong: $z(x,y)$ is a Cobb-Douglas function with $k=\sqrt{2}$ and $\alpha=0.1$.

See Cobb-Douglas functions.

Antwoord 4 feedback

Wrong: $z(x,y)$ can be written in the right form:
$$z(x,y) = \sqrt[4]{16xy^3} = 2x^{\frac{1}{4}}y^{\frac{3}{4}}.$$
Hence, $z(x,y)$ is a Cobb-Douglas function with $k=2$ and $\alpha=\tfrac{1}{4}$.

See Power functions or Cobb-Douglas functions.