We determine the extrema of y(x)=2x3+3x2+12x+5 for 0x5.

We use the following step-plan.

Step 1: Determine y(x)
y(x)=6x2+6x+12.

Step 2: Determine stationary points
y(x)=06x2+6x+12=0x2x2=0(x2)(x+1)=0x=1 or x=2.



x=1 is outside the domain of the function. Hence, x=2 is the unique stationary point.

Step 3: Determine y(c)
y(2)=25.

Step 4: Determine y(a) for a<c
y(0)=5.

Step 5: Determine y(b) for b>c
y(5)=110.

Conclusion
Since y(0)<y(2) and y(5)<y(2):
y(0)=5 is a boundary minimum
y(2)=25 is a maximum
y(5)=110 is a boundary minimum