We determine the extrema of y(x)=−2x3+3x2+12x+5 for 0≤x≤5.
We use the following step-plan.
Step 1: Determine y′(x)
y′(x)=−6x2+6x+12.
Step 2: Determine stationary points
y′(x)=0⇔−6x2+6x+12=0⇔x2−x−2=0⇔(x−2)(x+1)=0⇔x=−1 or x=2.
x=−1 is outside the domain of the function. Hence, x=2 is the unique stationary point.
Step 3: Determine y(c)
y(2)=25.
Step 4: Determine y(a) for a<c
y(0)=5.
Step 5: Determine y(b) for b>c
y(5)=−110.
Conclusion
Since y(0)<y(2) and y(5)<y(2):
y(0)=5 is a boundary minimum
y(2)=25 is a maximum
y(5)=−110 is a boundary minimum