Determine all the extrema of y(x)=ln(x)−2x.
Antwoord 1 correct
Correct
Antwoord 2 optie
- y(12)=ln(12)−1 is a maximum.
- y(0)=−∞ is a boundary minimum.
Antwoord 2 correct
Fout
Antwoord 3 optie
- y(12)=ln(12)−1 is a minimum.
- y(0)=0 is a boundary maximum.
Antwoord 3 correct
Fout
Antwoord 4 optie
y(12)=ln(12)−1 is a minimum.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(12)=ln(12)−1 is a maximum.
Antwoord 1 feedback
Correct: y′(x)=1x−2 and hence, y′(x)=0 for x=12. Since y(12)=ln(12)−1 , y(14)=ln(14)−12 and y(1)=−2 it holds that y(12)=ln(12)−1 is a maximum.
Go on.
Go on.
Antwoord 2 feedback
Wrong: x=0 is outside the domain of the function ln(x). Hence, there is no boundary extremum.
See Extra explanation: natural logarithm.
See Extra explanation: natural logarithm.
Antwoord 3 feedback
Wrong: x=0 is outside the domain of the function ln(x). Hence, there is no boundary extremum.
See Extra explanation: natural logarithm.
See Extra explanation: natural logarithm.
Antwoord 4 feedback