Determine all the extrema of y(x)=ln(x)2x.
  • y(12)=ln(12)1 is a minimum.
  • y(0)=0 is a boundary maximum.
y(12)=ln(12)1 is a maximum.
y(12)=ln(12)1 is a minimum.
  • y(12)=ln(12)1 is a maximum.
  • y(0)= is a boundary minimum.
Determine all the extrema of y(x)=ln(x)2x.
Antwoord 1 correct
Correct
Antwoord 2 optie
  • y(12)=ln(12)1 is a maximum.
  • y(0)= is a boundary minimum.
Antwoord 2 correct
Fout
Antwoord 3 optie
  • y(12)=ln(12)1 is a minimum.
  • y(0)=0 is a boundary maximum.
Antwoord 3 correct
Fout
Antwoord 4 optie
y(12)=ln(12)1 is a minimum.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(12)=ln(12)1 is a maximum.
Antwoord 1 feedback
Correct: y(x)=1x2 and hence, y(x)=0 for x=12. Since y(12)=ln(12)1 , y(14)=ln(14)12 and y(1)=2 it holds that y(12)=ln(12)1 is a maximum.

Go on.
Antwoord 2 feedback
Wrong: x=0 is outside the domain of the function ln(x). Hence, there is no boundary extremum.

See Extra explanation: natural logarithm.
Antwoord 3 feedback
Wrong: x=0 is outside the domain of the function ln(x). Hence, there is no boundary extremum.

See Extra explanation: natural logarithm.
Antwoord 4 feedback
Wrong: Calculate y(12), y(14) and y(1).

See Alternative monotonicity condition extremum.