Determine all the extrema of y(x)=4x216x+7.
y(12)=0 is a maximum.
y(2)=9 is a minimum.
y(12)=0 is a minimum.
y(2)=9 is a maximum.
Determine all the extrema of y(x)=4x216x+7.
Antwoord 1 correct
Correct
Antwoord 2 optie
y(2)=9 is a maximum.
Antwoord 2 correct
Fout
Antwoord 3 optie
y(12)=0 is a maximum.
Antwoord 3 correct
Fout
Antwoord 4 optie
y(12)=0 is a minimum.
Antwoord 4 correct
Fout
Antwoord 1 optie
y(2)=9 is a minimum.
Antwoord 1 feedback
Correct: y(x)=8x16. Hence, y(x)=0 if x=2. Since y(2)=9, y(0)=7, y(4)=7 it holds that y(2)=9 is a minimum.

Go on.
Antwoord 2 feedback
Wrong: Is this a maximum?

See Alternative monotonicity condition extremum.
Antwoord 3 feedback
Wrong: What is the solution to 8x=16?

Try again.
Antwoord 4 feedback
Wrong: What is the solution to 8x=16?

Try again.