We determine the extrema of y(x)=2x3+3x2+12x+5 for 5x5.

We use the following step-plan.

Step 1: Determine y(x)
y(x)=6x2+6x+12.

Step 2: Determine the stationary points
y(x)=06x2+6x+12=0x2x2=0(x2)(x+1)=0x=1 or x=2.



Step 3: Make a sign chart of y(x)
y(3)=60, y(0)=12 and y(3)=24.


Step 4: Determine the extremum locations
x=5 is a maximum location
x=1 is a minimum location
x=2 is a maximum location
x=5 is a minimum location

Step 5: Determine the extrema
y(5)=270
y(1)=3
y(2)=25
y(5)=110

Conclusion
y(5)=270 is a boundary maximum
y(1)=3 is a minimum
y(2)=25 is a maximum
y(5)=110 is a boundary minimum