We determine the extrema of y(x)=−2x3+3x2+12x+5 for −5≤x≤5.
We use the following step-plan.
Step 1: Determine y′(x)
y′(x)=−6x2+6x+12.
Step 2: Determine the stationary points
y′(x)=0⇔−6x2+6x+12=0⇔x2−x−2=0⇔(x−2)(x+1)=0⇔x=−1 or x=2.
Step 3: Make a sign chart of y′(x)
y′(−3)=−60, y′(0)=12 and y′(3)=−24.
Step 4: Determine the extremum locations
x=−5 is a maximum location
x=−1 is a minimum location
x=2 is a maximum location
x=5 is a minimum location
Step 5: Determine the extrema
y(−5)=270
y(−1)=−3
y(2)=25
y(5)=−110
Conclusion
y(−5)=270 is a boundary maximum
y(−1)=−3 is a minimum
y(2)=25 is a maximum
y(5)=−110 is a boundary minimum