Determine all the extrema of $f(x)=(x-2)^3$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$f(2)=0$ is a maximum.
Antwoord 2 correct
Fout
Antwoord 3 optie
$f(2)=0$ is a minimum.
Antwoord 3 correct
Fout
Antwoord 4 optie
$x=2$ is a maximum.
Antwoord 4 correct
Fout
Antwoord 1 optie
There are no extrema.
Antwoord 1 feedback
Correct: $f'(x)=3(x-2)^2$. Hence, $f'(x)=0$ if $x=2$. Via a sign chart (with for instance $f'(0)=12$ and $f'(4)=12$) we find that $x=2$ is not an extremum location, but a saddle point. Hence, there are no extrema.
Go on.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback