Determine all the extrema of f(x)=(x2)3.
f(2)=0 is a maximum.
x=2 is a maximum.
f(2)=0 is a minimum.
There are no extrema.
Determine all the extrema of f(x)=(x2)3.
Antwoord 1 correct
Correct
Antwoord 2 optie
f(2)=0 is a maximum.
Antwoord 2 correct
Fout
Antwoord 3 optie
f(2)=0 is a minimum.
Antwoord 3 correct
Fout
Antwoord 4 optie
x=2 is a maximum.
Antwoord 4 correct
Fout
Antwoord 1 optie
There are no extrema.
Antwoord 1 feedback
Correct: f(x)=3(x2)2. Hence, f(x)=0 if x=2. Via a sign chart (with for instance f(0)=12 and f(4)=12) we find that x=2 is not an extremum location, but a saddle point. Hence, there are no extrema.

Go on.
Antwoord 2 feedback
Wrong: Not every stationary point is an extremum location.

See First-order condition extremum.
Antwoord 3 feedback
Wrong: Not every stationary point is an extremum location.

See First-order condition extremum.
Antwoord 4 feedback
Wrong: An extremum is never a value of the input variable.

Seee Minimum/maximum.