Determine all the extrema of y(x)=(x−2)ex2.
Antwoord 1 correct
Correct
Antwoord 2 optie
y(0)=−2 is a minimum
Antwoord 2 correct
Fout
Antwoord 3 optie
- y(0)=−2 is a maximum
- y(2)=0 is a minimum
Antwoord 3 correct
Fout
Antwoord 4 optie
- y(0)=−2 is a maximum
- y(1)=−e is a minimum
Antwoord 4 correct
Fout
Antwoord 1 optie
- y(1−12√2)=(−1−12√2)e112−√2 is a maximum
- y(1+12√2)=(−1+12√2)e112+√2 is a minimum
Antwoord 1 feedback
Correct: y′(x)=ex2+2x(x−2)ex2=(2x2−4x+1)ex2.
y′(x)=0 if 2x2−4x+1=0. Via the quadratic equation we get x=1+12√2 and x=1−12√2.
Via a sign chart (for instance with y′(0)=1, y′(1)=−e and y′(2)=e4) we find that x=1−12√2 is a maximum location and x=1+12√2 is a minimum location.
Then y(1−12√2)=(−1−12√2)e112−√2 is a maximum, and
y(1+12√2)=(−1+12√2)e112+√2 is a minimum.
Go on.
y′(x)=0 if 2x2−4x+1=0. Via the quadratic equation we get x=1+12√2 and x=1−12√2.
Via a sign chart (for instance with y′(0)=1, y′(1)=−e and y′(2)=e4) we find that x=1−12√2 is a maximum location and x=1+12√2 is a minimum location.
Then y(1−12√2)=(−1−12√2)e112−√2 is a maximum, and
y(1+12√2)=(−1+12√2)e112+√2 is a minimum.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: ex2+2x(x−2)ex2≠2x(x−2).
Try again.
Try again.
Antwoord 4 feedback
Wrong: ex2+2x(x−2)ex2≠2x(x−1)ex2.
Try again.
Try again.