Determine all the extrema of y(x)=(x2)ex2.
  • y(0)=2 is a maximum
  • y(1)=e is a minimum
  • y(0)=2 is a maximum
  • y(2)=0 is a minimum
  • y(1122)=(1122)e1122 is a maximum
  • y(1+122)=(1+122)e112+2 is a minimum
y(0)=2 is a minimum
Determine all the extrema of y(x)=(x2)ex2.
Antwoord 1 correct
Correct
Antwoord 2 optie
y(0)=2 is a minimum
Antwoord 2 correct
Fout
Antwoord 3 optie
  • y(0)=2 is a maximum
  • y(2)=0 is a minimum
Antwoord 3 correct
Fout
Antwoord 4 optie
  • y(0)=2 is a maximum
  • y(1)=e is a minimum
Antwoord 4 correct
Fout
Antwoord 1 optie
  • y(1122)=(1122)e1122 is a maximum
  • y(1+122)=(1+122)e112+2 is a minimum
Antwoord 1 feedback
Correct: y(x)=ex2+2x(x2)ex2=(2x24x+1)ex2.

y(x)=0 if 2x24x+1=0. Via the quadratic equation we get x=1+122 and x=1122.

Via a sign chart (for instance with y(0)=1, y(1)=e and y(2)=e4) we find that x=1122 is a maximum location and x=1+122 is a minimum location.

Then y(1122)=(1122)e1122 is a maximum, and
y(1+122)=(1+122)e112+2 is a minimum.

Go on.
Antwoord 2 feedback
Wrong: Use the chain rule when differentiating.

See Chain rule.
Antwoord 3 feedback
Wrong: ex2+2x(x2)ex22x(x2).

Try again.
Antwoord 4 feedback
Wrong: ex2+2x(x2)ex22x(x1)ex2.

Try again.