We determine the second-order partial derivatives of $z(x,y)=ye^x+x^2y-5x$. $z'_x(x,y)=ye^x+2xy-5$ $z'_y(x,y)=e^x+x^2$ Hence, $z''_{xx}(x,y)=ye^x+2y$ $z''_{yx}(x,y)=e^x+2x$ $z''_{xy}(x,y)=e^x+2x$ $z''_{yy}(x,y)=0$ ‹ Vorige paginaSecond-order partial derivatives Volgende paginaExercise 1 ›