We determine the second-order partial derivatives of z(x,y)=yex+x2y−5x. z′x(x,y)=yex+2xy−5 z′y(x,y)=ex+x2 Hence, z″xx(x,y)=yex+2y z″yx(x,y)=ex+2x z″xy(x,y)=ex+2x z″yy(x,y)=0 ‹ Previous pageSecond-order partial derivatives Next pageExercise 1 ›