Determine zxx(x,y) and zyy of z(x,y)=xln(y)+x2y3.
  • zxx(x,y)=ln(y)+2xy3
  • zyy(x,y)=xy+3x2y2
  • zxx(x,y)=2y3
  • zyy(x,y)=xy2+6x2y
None of the other answers is correct.
  • zxx(x,y)=ln(y)+2y3
  • zyy(x,y)=1y+6x2y
Determine zxx(x,y) and zyy of z(x,y)=xln(y)+x2y3.
Antwoord 1 correct
Correct
Antwoord 2 optie
  • zxx(x,y)=ln(y)+2xy3
  • zyy(x,y)=xy+3x2y2
Antwoord 2 correct
Fout
Antwoord 3 optie
  • zxx(x,y)=ln(y)+2y3
  • zyy(x,y)=1y+6x2y
Antwoord 3 correct
Fout
Antwoord 4 optie
None of the other answers is correct.
Antwoord 4 correct
Fout
Antwoord 1 optie
  • zxx(x,y)=2y3
  • zyy(x,y)=xy2+6x2y
Antwoord 1 feedback
Correct:
  • zx(x,y)=ln(y)+2xy3
  • zy(x,y)=xy+3x2y2
Go on.
Antwoord 2 feedback
Wrong: We do not want to know the first-order partial derivatives.

See Second-order partial derivative.
Antwoord 3 feedback
Wrong: zx(x,y)=ln(y)+2xy3.

Try again.
Antwoord 4 feedback
Wrong: The correct answer is given.

Try again.