Determine zxx and z''_{yy} of z(x,y)=x\cdot \textrm{ln}(y)+x^2y^3.
  • z''_{xx}(x,y)=2y^3
  • z''_{yy}(x,y)=-\dfrac{x}{y^2}+6x^2y
  • z''_{xx}(x,y)=\textrm{ln}(y)+2y^3
  • z''_{yy}(x,y)=\dfrac{1}{y}+6x^2y
  • z''_{xx}(x,y)=\textrm{ln}(y)+2xy^3
  • z''_{yy}(x,y)=\dfrac{x}{y}+3x^2y^2
None of the other answers is correct.
Determine z''_{xx}(x,y) and z''_{yy} of z(x,y)=x\cdot \textrm{ln}(y)+x^2y^3.
Antwoord 1 correct
Correct
Antwoord 2 optie
  • z''_{xx}(x,y)=\textrm{ln}(y)+2xy^3
  • z''_{yy}(x,y)=\dfrac{x}{y}+3x^2y^2
Antwoord 2 correct
Fout
Antwoord 3 optie
  • z''_{xx}(x,y)=\textrm{ln}(y)+2y^3
  • z''_{yy}(x,y)=\dfrac{1}{y}+6x^2y
Antwoord 3 correct
Fout
Antwoord 4 optie
None of the other answers is correct.
Antwoord 4 correct
Fout
Antwoord 1 optie
  • z''_{xx}(x,y)=2y^3
  • z''_{yy}(x,y)=-\dfrac{x}{y^2}+6x^2y
Antwoord 1 feedback
Correct:
  • z'_x(x,y)=\textrm{ln}(y)+2xy^3
  • z'_y(x,y)=\dfrac{x}{y}+3x^2y^2
Go on.
Antwoord 2 feedback
Wrong: We do not want to know the first-order partial derivatives.

See Second-order partial derivative.
Antwoord 3 feedback
Wrong: z'_x(x,y)=\textrm{ln}(y)+2xy^3.

Try again.
Antwoord 4 feedback
Wrong: The correct answer is given.

Try again.