Consider the function z(x,y)=3log(x3y4). Determine zxy(x,y).
zxy(x,y)=0
zxy(x,y)=4yln(4)
zxy(x,y)=4x3y4ln(3)
zxy(x,y)=3xln(3)
Consider the function z(x,y)=3log(x3y4). Determine zxy(x,y).
Antwoord 1 correct
Correct
Antwoord 2 optie
zxy(x,y)=3xln(3)
Antwoord 2 correct
Fout
Antwoord 3 optie
zxy(x,y)=4yln(4)
Antwoord 3 correct
Fout
Antwoord 4 optie
zxy(x,y)=4x3y4ln(3)
Antwoord 4 correct
Fout
Antwoord 1 optie
zxy(x,y)=0
Antwoord 1 feedback
Correct: zx(x,y)=3x2y4x3y4ln(3)=3xln(3). Hence, zxy=zyx(x,y)=0.

Go on.
Antwoord 2 feedback
Wrong: zxy(x,y)zx(x,y).

See Second-order partial derivatives.
Antwoord 3 feedback
Wrong: zxy(x,y)zy(x,y).

See Second-order partial derivatives.
Antwoord 4 feedback
Wrong: Do not forget the chain rule.

See Chain rule.