Consider the function z(x,y)=3log(x3y4). Determine zxy.
z''_{xy}(x,y)=\dfrac{-4}{x^3y^4\textrm{ln}(3)}
z''_{xy}(x,y)=0
z''_{xy}(x,y)=\dfrac{3}{x \textrm{ln}(3)}
z''_{xy}(x,y)=\dfrac{4}{y\textrm{ln}(4)}
Consider the function z(x,y)=\;^3\!\log (x^3y^4). Determine z''_{xy}(x,y).
Antwoord 1 correct
Correct
Antwoord 2 optie
z''_{xy}(x,y)=\dfrac{3}{x \textrm{ln}(3)}
Antwoord 2 correct
Fout
Antwoord 3 optie
z''_{xy}(x,y)=\dfrac{4}{y\textrm{ln}(4)}
Antwoord 3 correct
Fout
Antwoord 4 optie
z''_{xy}(x,y)=\dfrac{-4}{x^3y^4\textrm{ln}(3)}
Antwoord 4 correct
Fout
Antwoord 1 optie
z''_{xy}(x,y)=0
Antwoord 1 feedback
Correct: z'_x(x,y)=\dfrac{3x^2y^4}{x^3y^4\textrm{ln}(3)}=\dfrac{3}{x\textrm{ln}(3)}. Hence, z''_{xy}=z''_{yx}(x,y)=0.

Go on.
Antwoord 2 feedback
Wrong: z''_{xy}(x,y)\neq z'_x(x,y).

See Second-order partial derivatives.
Antwoord 3 feedback
Wrong: z''_{xy}(x,y)\neq z'_y(x,y).

See Second-order partial derivatives.
Antwoord 4 feedback
Wrong: Do not forget the chain rule.

See Chain rule.