Determine all the stationary points of z(x,y)=x2y+5xyy3.
(0,0) and (5,0)
(0,0), (5,0), (212,112) and (212,112)
(212,0)
(0,0)
Determine all the stationary points of z(x,y)=x2y+5xyy3.
Antwoord 1 correct
Correct
Antwoord 2 optie
(0,0), (5,0), (212,112) and (212,112)
Antwoord 2 correct
Fout
Antwoord 3 optie
(0,0)
Antwoord 3 correct
Fout
Antwoord 4 optie
(212,0)
Antwoord 4 correct
Fout
Antwoord 1 optie
(0,0) and (5,0)
Antwoord 1 feedback
Correct: zx(x,y)=2xy+5y and zy(x,y)=x2+53y2. Hence, zx(x,y)=0 if y=0 or if x=212.

If we plug y=0 into zy(x,y) we get the equation x2+5x=0. The solutions of this equation are x=0 and x=5.

If we plug x=212 into zy(x,y) we get the equation 6143y2=0 and that equation has no solutions.

Hence, (x,y)=(0,0) and (x,y)=(5,0) are the only stationary points.

Go on.
Antwoord 2 feedback
Wrong: 6143y2=0 has no solutions.

Try again.
Antwoord 3 feedback
Wrong: When does it hold that zy(x,y)=0 if y=0?

Try again.
Antwoord 4 feedback
Wrong: zy(212,0)0.

See Stationary point.