Determine all the stationary points of z(x,y)=23y3−13x3+4x−y2x.
Antwoord 1 correct
Correct
Antwoord 2 optie
(2,0)
Antwoord 2 correct
Fout
Antwoord 3 optie
(2,0), (−2,0), (2+2√3,1) and (2−2√3,1)
Antwoord 3 correct
Fout
Antwoord 4 optie
(2,0) and (−2,0)
Antwoord 4 correct
Fout
Antwoord 1 optie
(2,0), (−2,0), (√2,√2) and (−√2,−√2)
Antwoord 1 feedback
Correct:
First we use y=0. z′x(x,y)=0 then gives −x2+4=0. Hence, x=2 or x=−2.
Then we use y=x. z′x(x,y)=0 then gives −x2+4−x2=0, or 2x2=4. Hence, x=√2 (with y=x=√2) or x=−√2 (with y=x=−√2).
Hence, (2,0), (−2,0), (√2,√2) and (−√2,−√2) are the stationary point.
Go on.
- z′x(x,y)=−x2+4−y2
- z′y(x,y)=2y2−2yx
First we use y=0. z′x(x,y)=0 then gives −x2+4=0. Hence, x=2 or x=−2.
Then we use y=x. z′x(x,y)=0 then gives −x2+4−x2=0, or 2x2=4. Hence, x=√2 (with y=x=√2) or x=−√2 (with y=x=−√2).
Hence, (2,0), (−2,0), (√2,√2) and (−√2,−√2) are the stationary point.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback
Wrong: z′y(x,y) is not only equal to 0 for y=0, but also for y=x.
Try again.
Try again.