Determine all the stationary points of z(x,y)=23y313x3+4xy2x.
(2,0)
(2,0), (2,0), (2,2) and (2,2)
(2,0) and (2,0)
(2,0), (2,0), (2+23,1) and (223,1)
Determine all the stationary points of z(x,y)=23y313x3+4xy2x.
Antwoord 1 correct
Correct
Antwoord 2 optie
(2,0)
Antwoord 2 correct
Fout
Antwoord 3 optie
(2,0), (2,0), (2+23,1) and (223,1)
Antwoord 3 correct
Fout
Antwoord 4 optie
(2,0) and (2,0)
Antwoord 4 correct
Fout
Antwoord 1 optie
(2,0), (2,0), (2,2) and (2,2)
Antwoord 1 feedback
Correct:
  • zx(x,y)=x2+4y2
  • zy(x,y)=2y22yx
zy(x,y)=0 gives 2y(yx)=0. Hence, y=0 or y=x.

First we use y=0. zx(x,y)=0 then gives x2+4=0. Hence, x=2 or x=2.

Then we use y=x. zx(x,y)=0 then gives x2+4x2=0, or 2x2=4. Hence, x=2 (with y=x=2) or x=2 (with y=x=2).

Hence, (2,0), (2,0), (2,2) and (2,2) are the stationary point.

Go on.
Antwoord 2 feedback
Wrong: zx(x,y)x2+4.

See Partial derivatives.
Antwoord 3 feedback
Wrong: zy(x,y)2y22y.

See Partial derivatives.
Antwoord 4 feedback
Wrong: zy(x,y) is not only equal to 0 for y=0, but also for y=x.

Try again.