Determine all the stationary points of $z(x,y)=\frac{1}{3}x^3-x+\frac{1}{3}y^3-4y$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$(1,2)$
Antwoord 2 correct
Fout
Antwoord 3 optie
$(0,0)$
Antwoord 3 correct
Fout
Antwoord 4 optie
There are no stationary points.
Antwoord 4 correct
Fout
Antwoord 1 optie
$(-1,-2)$, $(-1,2)$, $(1,-2)$ and $(1,2)$.
Antwoord 1 feedback
Correct:
$z'_y(x,y)=0$ gives $y=2$ or $y=-2$.
This results in the four combinations.
Go on.
- $z'_x(x,y)=x^2-1$
- $z'_y(x,y)=y^2-4$
$z'_y(x,y)=0$ gives $y=2$ or $y=-2$.
This results in the four combinations.
Go on.
Antwoord 2 feedback
Wrong: Do not forget the negative solutions of a quadratic equation.
Try again.
Try again.
Antwoord 3 feedback
Antwoord 4 feedback
Wrong: What are the two partial derivatives?
Try again.
Try again.