Determine the derivative of y(x)=3√(2logx+√x)5.
Antwoord 1 correct
Correct
Antwoord 2 optie
y′(x)=53(2logx+√x)23⋅(1x+12√x)
Antwoord 2 correct
Fout
Antwoord 3 optie
y′(x)=35(2logx+√x)−25⋅(1xln(2)+12√x)
Antwoord 3 correct
Fout
Antwoord 4 optie
y′(x)=53(1xln(2)+12√x)23
Antwoord 4 correct
Fout
Antwoord 1 optie
None of the other answers is correct.
Antwoord 1 feedback
Correct: y(x)=(2logx+√x)53.
Hence, y′(x)=53(2logx+√x)23⋅(1xln(2)+12√x).
Go on.
Hence, y′(x)=53(2logx+√x)23⋅(1xln(2)+12√x).
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback
Wrong: The composite power rule does not state the following.
Let y(x)=(v(x))p. Then:
y′(x)=p(v′(x))p−1.
See Extra explanation: special cases.
Let y(x)=(v(x))p. Then:
y′(x)=p(v′(x))p−1.
See Extra explanation: special cases.