Determine the derivative of y(x)=3(2logx+x)5.
y(x)=35(2logx+x)25(1xln(2)+12x)
y(x)=53(2logx+x)23(1x+12x)
None of the other answers is correct.
y(x)=53(1xln(2)+12x)23
Determine the derivative of y(x)=3(2logx+x)5.
Antwoord 1 correct
Correct
Antwoord 2 optie
y(x)=53(2logx+x)23(1x+12x)
Antwoord 2 correct
Fout
Antwoord 3 optie
y(x)=35(2logx+x)25(1xln(2)+12x)
Antwoord 3 correct
Fout
Antwoord 4 optie
y(x)=53(1xln(2)+12x)23
Antwoord 4 correct
Fout
Antwoord 1 optie
None of the other answers is correct.
Antwoord 1 feedback
Correct: y(x)=(2logx+x)53.

Hence, y(x)=53(2logx+x)23(1xln(2)+12x).

Go on.
Antwoord 2 feedback
Wrong: The derivative of 2logx is not 1x.

See Derivatives of elementary functions.
Antwoord 3 feedback
Wrong: 3x5x35.

See Extra explanation: alternative notation.
Antwoord 4 feedback
Wrong: The composite power rule does not state the following.

Let y(x)=(v(x))p. Then:
y(x)=p(v(x))p1.

See Extra explanation: special cases.