We solve (ln(x29))2=ln(x+3)+ln(x3)+2.


(ln(x29))2=ln(x+3)+ln(x3)+2(ln(x29))2=ln(x29)+2.

We define p=ln(x29). We obtain
p2=p+2p2p2=0(p2)(p+1)=0p=1 or p=2.



Via p=1 we get
1=ln(x29)ln(e1)=ln(x29)e1=x2+9x2=e1+9 x2=1e+9x=1e+9 or x=1e+9.


Via p=2 we get
2=ln(x29)ln(e2)=ln(x29)e2=x29x2=e2+9 x=e2+9 or x=e2+9.


Hence, the four possible solutions are x=1e+9, x=1e+9, x=e2+9 and x=e2+9, but since the equation is only defined for x>3 we only obtain x=1e+9 and x=e2+9 as solutions.