We solve (ln(x2−9))2=ln(x+3)+ln(x−3)+2.
(ln(x2−9))2=ln(x+3)+ln(x−3)+2⇔(ln(x2−9))2=ln(x2−9)+2.
We define p=ln(x2−9). We obtain
p2=p+2⇔p2−p−2=0⇔(p−2)(p+1)=0⇔p=−1 or p=2.
Via p=−1 we get
−1=ln(x2−9)⇔ln(e−1)=ln(x2−9)⇔e−1=x2+9⇔x2=e−1+9 ⇔x2=1e+9⇔x=√1e+9 or x=−√1e+9.
Via p=2 we get
2=ln(x2−9)⇔ln(e2)=ln(x2−9)⇔e2=x2−9⇔x2=e2+9 ⇔x=√e2+9 or x=−√e2+9.
Hence, the four possible solutions are x=√1e+9, x=−√1e+9, x=√e2+9 and x=−√e2+9, but since the equation is only defined for x>3 we only obtain x=√1e+9 and x=√e2+9 as solutions.