Solve ln(4⋅23x)+3⋅ln(16)=ln(512⋅2x2+3x+1).
Antwoord 1 correct
Correct
Antwoord 2 optie
x=2
Antwoord 2 correct
Fout
Antwoord 3 optie
There is no solution.
Antwoord 3 correct
Fout
Antwoord 4 optie
x=√4088
Antwoord 4 correct
Fout
Antwoord 1 optie
None of the other answers is correct.
Antwoord 1 feedback
Correct: ln(4⋅23x)+3⋅ln(16)=ln(512⋅2x2+3x+1)⇔ln(4⋅23x)+ln(163)=ln(512⋅2x2+3x+1)⇔ln(163⋅4⋅23x)=ln(512⋅2x2+3x+1)⇔163⋅4⋅23x=512⋅2x2+3x+1⇔212⋅22⋅23x=29⋅2x2+3x+1⇔23x+14=2x2+3x+10⇔3x+14=x2+3x+10⇔x2−4=0⇔x=−2 or x=2.
Antwoord 2 feedback
Wrong: What are the solutions to x2=4?
Try again.
Try again.
Antwoord 3 feedback
Wrong: First of all apply the Properties of logarithmic functions to get on both sides of the equation one ln-term.
See Properties logarithmic functions.
See Properties logarithmic functions.
Antwoord 4 feedback
Wrong: First of all apply the Properties of logarithmic functions to get on both sides of the equation one ln-term.
See Properties logarithmic functions.
See Properties logarithmic functions.