Determine all x such that 3⋅5log(x)<5log(5x)+5log(60x)−(5log(3x)+2).
Antwoord 1 correct
Correct
Antwoord 2 optie
x<−2 and 0<x<2
Antwoord 2 correct
Fout
Antwoord 3 optie
x>0
Antwoord 3 correct
Fout
Antwoord 4 optie
x<−2 and x>2
Antwoord 4 correct
Fout
Antwoord 1 optie
0<x<2
Antwoord 1 feedback
Correct: 3⋅5log(x)=5log(5x)+5log(60x)−(5log(3x)+2)⇔5log(x3)=5log(5x)+5log(60x)−5log(3x)−5log(25)⇔5log(x3)=5log(5x⋅60x3x⋅25)⇔5log(x3)=5log(4x)⇔x3=4x⇔x3−4x=0⇔x(x2−4)=0⇔x=0 or x=−2 or x=2.
x=0 and x=−2 are outside the domain of the function. Hence, x=2. Via a sign chart we find 0<x<2.
Go on.
x=0 and x=−2 are outside the domain of the function. Hence, x=2. Via a sign chart we find 0<x<2.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: Calculate all the solutions of the corresponding equation.
See Properties logarithmic functions.
See Properties logarithmic functions.
Antwoord 4 feedback