Determine all x such that 35log(x)<5log(5x)+5log(60x)(5log(3x)+2).
x<2 and x>2
x<2 and 0<x<2
0<x<2
x>0
Determine all x such that 35log(x)<5log(5x)+5log(60x)(5log(3x)+2).
Antwoord 1 correct
Correct
Antwoord 2 optie
x<2 and 0<x<2
Antwoord 2 correct
Fout
Antwoord 3 optie
x>0
Antwoord 3 correct
Fout
Antwoord 4 optie
x<2 and x>2
Antwoord 4 correct
Fout
Antwoord 1 optie
0<x<2
Antwoord 1 feedback
Correct: 35log(x)=5log(5x)+5log(60x)(5log(3x)+2)5log(x3)=5log(5x)+5log(60x)5log(3x)5log(25)5log(x3)=5log(5x60x3x25)5log(x3)=5log(4x)x3=4xx34x=0x(x24)=0x=0 or x=2 or x=2.

x=0 and x=2 are outside the domain of the function. Hence, x=2. Via a sign chart we find 0<x<2.

Go on.
Antwoord 2 feedback
Wrong: Consider the domain of a logarithmic function.

See Logarithmic functions.
Antwoord 3 feedback
Wrong: Calculate all the solutions of the corresponding equation.

See Properties logarithmic functions.
Antwoord 4 feedback
Wrong: Consider the domain of a logarithmic function.

See Logarithmic functions.