Solve $3^{2x}=9^{5x-2}$.

$x=\frac{1}{2}$.

$x=\frac{2}{3}$

There is no solution.

$x=2$

Solve $3^{2x}=9^{5x-2}$.

Antwoord 1 correct
Correct
Antwoord 2 optie

$x=\frac{2}{3}$

Antwoord 2 correct
Fout
Antwoord 3 optie

There is no solution.

Antwoord 3 correct
Fout
Antwoord 4 optie

$x=2$

Antwoord 4 correct
Fout
Antwoord 1 optie

$x=\frac{1}{2}$.

Antwoord 1 feedback

Correct: $$\begin{align}
3^{2x}=9^{5x-2} & \Leftrightarrow 3^{2x}=(3^2)^{5x-2} \\
& \Leftrightarrow 3^{2x}=3^{2 \cdot(5x-2)} \\
& \Leftrightarrow 3^{2x}=3^{10x-4} \\
& \Leftrightarrow 2x=10x-4 \\
& \Leftrightarrow -8x=-4 \\
& \Leftrightarrow x=\frac{1}{2}. \\
\end{align}$$

Go on.

Antwoord 2 feedback

Wrong: $$\begin{align*}3^{2x}=9^{5x-2} & \not\Leftrightarrow 2x=5x-2\end{align*}$$

See Feature exponential functions.

Antwoord 3 feedback

Wrong: This equation can be solved.

See Properties exponential functions.

Antwoord 4 feedback

Wrong: $$\begin{align*}3^{2x}=9^{5x-2} & \not\Leftrightarrow 9^{4x}=9^{5x-2}\end{align*}$$

See Properties exponential functions.