Consider the function f(x)=x2−x−2. Determine the area enclosed by the graph of f(x), the x-axis and the lines x=−2 and x=0.
Antwoord 1 correct
Correct
Antwoord 2 optie
23
Antwoord 2 correct
Fout
Antwoord 3 optie
4
Antwoord 3 correct
Fout
Antwoord 4 optie
116
Antwoord 4 correct
Fout
Antwoord 1 optie
3
Antwoord 1 feedback
Correct: Note that the zeros of the function f(x) are x=−1 and x=2. On the interval [−2,0] the function changes signs once. It holds that f(x)≥0 for −2≤x≤−1 and f(x)≤0 for −1≤x≤0. The desired area consists of two parts: O1 and O2:
O1=∫−1−2f(x)dx=[13x3−12x2−2x]−1−2=116O2=−∫0−1f(x)dx=−[13x3−12x2−2x]0−1=76
Hence, O1+O2=(116)+(76)=3.
Go on.
O1=∫−1−2f(x)dx=[13x3−12x2−2x]−1−2=116O2=−∫0−1f(x)dx=−[13x3−12x2−2x]0−1=76
Hence, O1+O2=(116)+(76)=3.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: You have to find an antiderivative first, before plugging in the values x=−2 and x=0.
See Integral.
See Integral.
Antwoord 4 feedback
Wrong: You have to calculate the integral over the entire interval [−2,0], not just on the interval [−2,−1].
See Example (film).
See Example (film).