Consider the function f(x)=x2+4. Determine the area of the region enclosed by the graph of f(x), the x-axis and the lines x=0 and x=3.
723
513
3
5
Consider the function f(x)=x2+4. Determine the area of the region enclosed by the graph of f(x), the x-axis and the lines x=0 and x=3.
Antwoord 1 correct
Correct
Antwoord 2 optie
3
Antwoord 2 correct
Fout
Antwoord 3 optie
5
Antwoord 3 correct
Fout
Antwoord 4 optie
513
Antwoord 4 correct
Fout
Antwoord 1 optie
723
Antwoord 1 feedback
Correct: Note that the zeros of the function f(x) are x=2 and x=2. Hence, on the interval [0,3] the function changes signs once. It holds that f(x)0 for 0x2 and f(x)0 for 2x3. Hence, the desired area consists of two parts: O1 and O2:

O1=20f(x)dx=[13x3+4x]20=513O2=32f(x)dx=[13x3+4x]32=213

Hence, O1+O2=(513)+(213)=723.

Go on.
Antwoord 2 feedback
Wrong: Note that f(x)0 for x2.

See Example (film).
Antwoord 3 feedback
Wrong: You first have to find an antiderivative, before plugging in the values x=0 and x=3.

See Integral.
Antwoord 4 feedback
Wrong: Calculate the integral over the entire interval [0,3], not just over the subinterval [0,2].

See Example (film).