Consider the function f(x)=−x2+4. Determine the area of the region enclosed by the graph of f(x), the x-axis and the lines x=0 and x=3.
Antwoord 1 correct
Correct
Antwoord 2 optie
3
Antwoord 2 correct
Fout
Antwoord 3 optie
5
Antwoord 3 correct
Fout
Antwoord 4 optie
513
Antwoord 4 correct
Fout
Antwoord 1 optie
723
Antwoord 1 feedback
Correct: Note that the zeros of the function f(x) are x=−2 and x=2. Hence, on the interval [0,3] the function changes signs once. It holds that f(x)≥0 for 0≤x≤2 and f(x)≤0 for 2≤x≤3. Hence, the desired area consists of two parts: O1 and O2:
O1=∫20f(x)dx=[−13x3+4x]20=513O2=−∫32f(x)dx=−[−13x3+4x]32=213
Hence, O1+O2=(513)+(213)=723.
Go on.
O1=∫20f(x)dx=[−13x3+4x]20=513O2=−∫32f(x)dx=−[−13x3+4x]32=213
Hence, O1+O2=(513)+(213)=723.
Go on.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: You first have to find an antiderivative, before plugging in the values x=0 and x=3.
See Integral.
See Integral.
Antwoord 4 feedback
Wrong: Calculate the integral over the entire interval [0,3], not just over the subinterval [0,2].
See Example (film).
See Example (film).