Solve $\;^5\!\log x^2 = \;^5\!\log 4$.
$x=16$
The correct answer is not among the other options.
$x=2$
$x=65536$
Solve $\;^5\!\log x^2 = \;^5\!\log 4$.
Antwoord 1 correct
Fout
Antwoord 2 optie
The correct answer is not among the other options.
Antwoord 2 correct
Correct
Antwoord 3 optie
$x=2$
Antwoord 3 correct
Fout
Antwoord 4 optie
$x=65536$
Antwoord 4 correct
Fout
Antwoord 1 optie
$x=16$
Antwoord 1 feedback
Wrong: The solution to $x^2=4$ is not $16$.

See Power functions.
Antwoord 2 feedback
Correct: $$\begin{align*}
\;^5\!\log x^2 = \;^5\!\log 4 & \Leftrightarrow x^2=4\\
& \Leftrightarrow x=2 \mbox{ or } x=-2\\
\end{align*}$$

Go on.
Antwoord 3 feedback
Wrong: What are the solutions to $x^2=4$?

Try again.
Antwoord 4 feedback
Wrong: $x\neq \sqrt{4^{16}}$.

See Feature logarithmic functions