• Maximize z(x,y)=4x23y13                      
  • Subject to 12x2+y2=27
  • Where x,y0 
z(21312,1312)=2333100
z(6,3)=43108
z(43,3)=1747103
z(2,5)=1067
  • Maximize z(x,y)=4x23y13                      
  • Subject to 12x2+y2=27
  • Where x,y0 
Antwoord 1 correct
Correct
Antwoord 2 optie
z(21312,1312)=2333100
Antwoord 2 correct
Fout
Antwoord 3 optie
z(43,3)=1747103
Antwoord 3 correct
Fout
Antwoord 4 optie
z(2,5)=1067
Antwoord 4 correct
Fout
Antwoord 1 optie
z(6,3)=43108
Antwoord 1 feedback
Correct: 83x13y1343x23y23=2yx=x2y and hence, 4y2=x2 and therefore, 2y=x. We plug this into the restriction: 12(2y)2+y2=27, which gives y=3. As a consequence, x=23=6. z(6,3)=43108. We check the boundaries: z(54,0)=0 and z(0,27)=0. Hence, z(6,3)=43108 is the maximum.

Go on.
Antwoord 2 feedback
Wrong: (2y)22y2.

Try again.
Antwoord 3 feedback
Wrong: 4y2=x2 does not imply 4y=x.

Try again.
Antwoord 4 feedback
Wrong: Do no just guess.

Try (again).