- Maximize z(x,y)=4x23y13
- Subject to 12x2+y2=27
- Where x,y≥0
Antwoord 1 correct
Correct
Antwoord 2 optie
z(2⋅√1312,√1312)=2333100
Antwoord 2 correct
Fout
Antwoord 3 optie
z(4⋅√3,√3)=1747103
Antwoord 3 correct
Fout
Antwoord 4 optie
z(2,5)=1067
Antwoord 4 correct
Fout
Antwoord 1 optie
z(6,3)=4⋅3√108
Antwoord 1 feedback
Correct: 83x−13y1343x23y−23=2yx=x2y and hence, 4y2=x2 and therefore, 2y=x. We plug this into the restriction: 12(2y)2+y2=27, which gives y=3. As a consequence, x=2⋅3=6. z(6,3)=4⋅3√108. We check the boundaries: z(√54,0)=0 and z(0,√27)=0. Hence, z(6,3)=4⋅3√108 is the maximum.
Go on.
Go on.
Antwoord 2 feedback
Wrong: (2y)2≠2y2.
Try again.
Try again.
Antwoord 3 feedback
Wrong: 4y2=x2 does not imply 4y=x.
Try again.
Try again.
Antwoord 4 feedback
Wrong: Do no just guess.
Try (again).
Try (again).