• Maximize z(x,y)=x2y12                      
  • Subject to 7x+3y=30
  • Where x,y0
z(337,2)=1137492
None of the other answers is correct.
z(0,0)=0
z(217,5)=429495
  • Maximize z(x,y)=x2y12                      
  • Subject to 7x+3y=30
  • Where x,y0
Antwoord 1 correct
Correct
Antwoord 2 optie
z(217,5)=429495
Antwoord 2 correct
Fout
Antwoord 3 optie
z(0,0)=0
Antwoord 3 correct
Fout
Antwoord 4 optie
None of the other answers is correct.
Antwoord 4 correct
Fout
Antwoord 1 optie
z(337,2)=1137492
Antwoord 1 feedback
Correct: zx(x,y)zy(x,y)=2xy1212x2y12=4yx=73 gives x=127y. Plugging this into the restriction gives 7127y+3y=30, which results in y=2 with x=1272=337. z(337,2)=1137492. We check the boundaries: z(0,10)=0 and z(427,0)=0. Hence, z(337,2)=1137492 is the maximum.

Go on.
Antwoord 2 feedback
Wrong: 2121.

Try again.
Antwoord 3 feedback
Wrong: (x,y)=(0,0) does not satisfy the restriction.

See Constrained optimization functions of two variables.
Antwoord 4 feedback
Wrong: The correct answer is among them.

Try again.