Introduction: A constrained extremum problem is given by
Remark: Do not forget to check whether the extremum is a minimum or a maximum.
- Optimize $z(x,y)$
- Subject to $g(x,y)=k$
- Where $x \in D_1$, $y \in D_2$
-
$\dfrac{z'_x(x,y)}{z'_y(x,y)}=\dfrac{g'_x(x,y)}{g'_y(x,y)}$
- $g(x,y)=k$
Remark: Do not forget to check whether the extremum is a minimum or a maximum.