• Maximalize z(x,y)=x2+2xy+y2+16y                      
  • Subject to x+3y=6
  • Where x,y0 
z(3,1)=32
None of the other answers is correct.
z(6,4)=68
z(34,134)=3414
  • Maximalize z(x,y)=x2+2xy+y2+16y                      
  • Subject to x+3y=6
  • Where x,y0 
Antwoord 1 correct
Correct
Antwoord 2 optie
z(3,1)=32
Antwoord 2 correct
Fout
Antwoord 3 optie
z(34,134)=3414
Antwoord 3 correct
Fout
Antwoord 4 optie
z(6,4)=68
Antwoord 4 correct
Fout
Antwoord 1 optie
None of the other answers is correct.
Antwoord 1 feedback
Correct: We rewrite x+3y=6 as x=63y and plug this into the objective function: Z(y)=(63y)2+2(63y)y+y2+16y=4y28y+36. Z(y)=8y8. Hence, the stationary point is y=1, with corresponding x=3. z(3,1)=32. We check the boundaries: z(0,2)=16, but z(6,0)=36. Hence, z(6,0)=36 is the maximum.

Go on.
Antwoord 2 feedback
Wrong: Do not forget the boundaries.

Try again.
Antwoord 3 feedback
Wrong: (63y)263y2.

Try again.
Antwoord 4 feedback
Wrong: x=6 is outside the domain of the function.

See Constrained optimization functions of two variables.