- Maximize z(x,y)=xy−x3
- Subject to √y+x=8
- Where x,y≥0
Antwoord 1 correct
Correct
Antwoord 2 optie
z(113,623)=61427
Antwoord 2 correct
Fout
Antwoord 3 optie
z(0,64)=0
Antwoord 3 correct
Fout
Antwoord 4 optie
z(16,64)=−3072
Antwoord 4 correct
Fout
Antwoord 1 optie
z(2,36)=64
Antwoord 1 feedback
Correct: We rewrite √y+x=8 to y=(8−x)2. We plug this into the objective function: Z(x)=x(8−x)2−x3=−16x2+64x. Z′(x)=−32x+64. Putting equal to zero results in x=2 and y=36. z(2,36)=64. We check the boundaries: z(8,0)=−512 and z(0,64)=0. Hence, z(2,36)=64 is a maximum.
Go on.
Go on.
Antwoord 2 feedback
Wrong: √y+x=8 cannot be rewritten as y=8−x.
Try again.
Try again.
Antwoord 3 feedback
Wrong: This is not a maximum, but a minimum.
Try again.
Try again.
Antwoord 4 feedback
Wrong: To find a stationary point of the function you need to put the derivative (and not the function itself) equal to zero.
See Stationary point.
See Stationary point.