• Maximize z(x,y)=xyx3                      
  • Subject to y+x=8
  • Where x,y0 
z(2,36)=64
z(0,64)=0
z(113,623)=61427
z(16,64)=3072
  • Maximize z(x,y)=xyx3                      
  • Subject to y+x=8
  • Where x,y0 
Antwoord 1 correct
Correct
Antwoord 2 optie
z(113,623)=61427
Antwoord 2 correct
Fout
Antwoord 3 optie
z(0,64)=0
Antwoord 3 correct
Fout
Antwoord 4 optie
z(16,64)=3072
Antwoord 4 correct
Fout
Antwoord 1 optie
z(2,36)=64
Antwoord 1 feedback
Correct: We rewrite y+x=8 to y=(8x)2. We plug this into the objective function: Z(x)=x(8x)2x3=16x2+64x. Z(x)=32x+64. Putting equal to zero results in x=2 and y=36. z(2,36)=64. We check the boundaries: z(8,0)=512 and z(0,64)=0. Hence, z(2,36)=64 is a maximum.

Go on.
Antwoord 2 feedback
Wrong: y+x=8 cannot be rewritten as y=8x.

Try again.
Antwoord 3 feedback
Wrong: This is not a maximum, but a minimum.

Try again.
Antwoord 4 feedback
Wrong: To find a stationary point of the function you need to put the derivative (and not the function itself) equal to zero.

See Stationary point.