- Maximize z(x,y)=3x2y
- Subject to (x+1)y=10
- Where x,y<−1
Antwoord 1 correct
Correct
Antwoord 2 optie
z(0,10)=0
Antwoord 2 correct
Fout
Antwoord 3 optie
z(−11556,−56059)=−120
Antwoord 3 correct
Fout
Antwoord 4 optie
z(−5,−212)=18712
Antwoord 4 correct
Fout
Antwoord 1 optie
z(−2,−10)=−120
Antwoord 1 feedback
Correct: y=10x+1.
Z(x)=30x2x+1.
Z′(x)=30x(x+2)(x+1)2. Hence, Z′(x)=0 for x=0 (outside domain) or x=−2. Via a sign chart you can determine that x=−2 is a maximum location.
y(−2)=10−2+1=−10.
Hence, z(−2,−10)=−120 is the solution.
Go on.
Z(x)=30x2x+1.
Z′(x)=30x(x+2)(x+1)2. Hence, Z′(x)=0 for x=0 (outside domain) or x=−2. Via a sign chart you can determine that x=−2 is a maximum location.
y(−2)=10−2+1=−10.
Hence, z(−2,−10)=−120 is the solution.
Go on.
Antwoord 2 feedback
Wrong: (x,y)=(0,10) is not part of the domain.
Try again.
Try again.
Antwoord 3 feedback
Wrong: You cannot find the zeros of 30x2+60x(x+1)2 by putting the nominator and denominator equal to each other. Moreover, you cannot round intermediate solutions (√3252).
Try again.
Try again.
Antwoord 4 feedback
Wrong: z(−5,−212)≠18712, because (−5)2≠−25.
Try again.
Try again.