• Maximize z(x,y)=3x2y
  • Subject to (x+1)y=10
  • Where x,y<1
z(2,10)=120
z(0,10)=0
z(11556,56059)=120
z(5,212)=18712
  • Maximize z(x,y)=3x2y
  • Subject to (x+1)y=10
  • Where x,y<1
Antwoord 1 correct
Correct
Antwoord 2 optie
z(0,10)=0
Antwoord 2 correct
Fout
Antwoord 3 optie
z(11556,56059)=120
Antwoord 3 correct
Fout
Antwoord 4 optie
z(5,212)=18712
Antwoord 4 correct
Fout
Antwoord 1 optie
z(2,10)=120
Antwoord 1 feedback
Correct: y=10x+1.

Z(x)=30x2x+1.

Z(x)=30x(x+2)(x+1)2. Hence, Z(x)=0 for x=0 (outside domain) or x=2. Via a sign chart you can determine that x=2 is a maximum location.

y(2)=102+1=10.

Hence, z(2,10)=120 is the solution.

Go on.
Antwoord 2 feedback
Wrong: (x,y)=(0,10) is not part of the domain.

Try again.
Antwoord 3 feedback
Wrong: You cannot find the zeros of 30x2+60x(x+1)2 by putting the nominator and denominator equal to each other. Moreover, you cannot round intermediate solutions (3252).

Try again.
Antwoord 4 feedback
Wrong: z(5,212)18712, because (5)225.

Try again.