• Minimize z(x,y)=x2+3y2+1
  • Subject to 3x+y=2
  • Where x,y0
z(2945,115)=18682025
z(0,0)=1
z(914,114)=137
z(23,0)=149
  • Minimize z(x,y)=x2+3y2+1
  • Subject to 3x+y=2
  • Where x,y0
Antwoord 1 correct
Correct
Antwoord 2 optie
z(23,0)=149
Antwoord 2 correct
Fout
Antwoord 3 optie
z(0,0)=1
Antwoord 3 correct
Fout
Antwoord 4 optie
z(2945,115)=18682025
Antwoord 4 correct
Fout
Antwoord 1 optie
z(914,114)=137
Antwoord 1 feedback
Correct: 3x+y=2 gives y(x)=23x. We plug this into the object function: Z(x)=x2+3(23x)2+1=28x236x+13. Z(x)=56x36 and hence, x=914 is the only stationary point. Z(x)=56, hence Z(914)=56>0. This means we have a minimum. y=23914=114. Then z(914,114)=137 is a minimum.

Go on.
Antwoord 2 feedback
Wrong: There is an interior solution.

Try again.
Antwoord 3 feedback
Wrong: x=0 and y=0 do not satisfy the constraint 3x+y=2.

See Constrained optimizaton functions of two variables.
Antwoord 4 feedback
Wrong: Do not just guess.

Try (again).