- Minimize z(x,y)=x2+3y2+1
- Subject to 3x+y=2
- Where x,y≥0
Antwoord 1 correct
Correct
Antwoord 2 optie
z(23,0)=149
Antwoord 2 correct
Fout
Antwoord 3 optie
z(0,0)=1
Antwoord 3 correct
Fout
Antwoord 4 optie
z(2945,115)=18682025
Antwoord 4 correct
Fout
Antwoord 1 optie
z(914,114)=137
Antwoord 1 feedback
Correct: 3x+y=2 gives y(x)=2−3x. We plug this into the object function: Z(x)=x2+3(2−3x)2+1=28x2−36x+13. Z′(x)=56x−36 and hence, x=914 is the only stationary point. Z″(x)=56, hence Z″(914)=56>0. This means we have a minimum. y=2−3⋅914=114. Then z(914,114)=137 is a minimum.
Go on.
Go on.
Antwoord 2 feedback
Wrong: There is an interior solution.
Try again.
Try again.
Antwoord 3 feedback
Wrong: x=0 and y=0 do not satisfy the constraint 3x+y=2.
See Constrained optimizaton functions of two variables.
See Constrained optimizaton functions of two variables.
Antwoord 4 feedback
Wrong: Do not just guess.
Try (again).
Try (again).