Determine the shadow price corresponding to the solution of the following constrained extremum problem.
- Maximize $z(x,y)=xy$
- Subject to $5x+y=25$
- Where $x,y\geq0$
Antwoord 1 correct
Correct
Antwoord 2 optie
$\lambda=-2\frac{1}{2}$
Antwoord 2 correct
Fout
Antwoord 3 optie
$\lambda=12\frac{1}{2}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$\lambda=-12\frac{1}{2}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$\lambda=2\frac{1}{2}$
Antwoord 1 feedback
Correct: $L(x,y,\lambda)=xy-\lambda(5x+y-25)$. We differentiate with respect to the variables $x$, $y$ and $\lambda$ and put the derivatives equal to zero:
Go on.
-
$L'_x(x,y,\lambda)=y-5\lambda=0$,
-
$L'_y(x,y,\lambda)=x-\lambda=0$,
- $L'_{\lambda}(x,y,\lambda)=-5x-y+25=0$.
Go on.
Antwoord 2 feedback
Wrong: The Lagrange function is $L(x,y,\lambda)=xy-\lambda(5x+y-25)$.
Try again.
Try again.
Antwoord 3 feedback
Wrong: $y=5\lambda$.
Try again.
Try again.
Antwoord 4 feedback
Wrong: $y=5\lambda$.
Try again.
Try again.