The solution of the following constrained extremum problem is given by z(1,2)=8.
- Maximize z(x,y)=xy3
- Subject to 2x2+32y2=8
- Where x,y≥0
Antwoord 1 correct
Correct
Antwoord 2 optie
λ=0
Antwoord 2 correct
Fout
Antwoord 3 optie
λ=112
Antwoord 3 correct
Fout
Antwoord 4 optie
λ=8
Antwoord 4 correct
Fout
Antwoord 1 optie
λ=2
Antwoord 1 feedback
Correct: L(x,y,λ)=xy3−λ(2x2+32y2−8). L′x(x,y,λ)=y3−4λx. We put these equal to zero and plug in (x,y)=(1,2): 23−4λ1=0. Rewriting gives λ=2.
Go on.
Go on.
Antwoord 2 feedback
Wrong: Use the fact that z(1,2)=8 is the maximum.
Try again.
Try again.
Antwoord 3 feedback
Wrong: 23≠6.
Try again.
Try again.
Antwoord 4 feedback