Determine the shadow price corresponding to the solution of the following constrained extremum problem.

  • Minimize $z(x,y)=-xy+2$                      
  • Subject to $x^2+y=27$
  • Where $x,y\geq 0$
$\lambda=-3$
$\lambda=3$
$\lambda=-1+\frac{1}{2}\sqrt{112}$
$\lambda=-1-\frac{1}{2}\sqrt{112}$
Determine the shadow price corresponding to the solution of the following constrained extremum problem.

  • Minimize $z(x,y)=-xy+2$                      
  • Subject to $x^2+y=27$
  • Where $x,y\geq 0$
Antwoord 1 correct
Correct
Antwoord 2 optie
$\lambda=3$
Antwoord 2 correct
Fout
Antwoord 3 optie
$\lambda=-1+\frac{1}{2}\sqrt{112}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$\lambda=-1-\frac{1}{2}\sqrt{112}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$\lambda=-3$
Antwoord 1 feedback
Correct: $L(x,y,\lambda)=-xy+2-\lambda(x^2+y-27)$. We differentiate with respect to the variables $x$, $y$ and $\lambda$:
  • $L'_x(x,y,\lambda)=-y-2\lambda x$,
  • $L'_y(x,y,\lambda)=-x-\lambda$,
  • $L'_{\lambda}(x,y,\lambda)=-x^2-y+27$.
We put the first-order derivatives equal to zero and solve the system: $L'_y(x,y,\lambda)=-x-\lambda=0$ gives $x=-\lambda$. We plug this into $L'_x(x,y,\lambda)=-y-2\lambda x=0$ and that gives $y=2\lambda^2$. We plug that into $L'_{\lambda}(x,y,\lambda)=-x^2-y+27=0$, which results in $\lambda^2=9$, and hence, $\lambda=3$ or $\lambda=-3$. Since $x\geq 0$ and $x=-\lambda$ it must hold that $\lambda=-3$, $x=3$ and hence, $y=18$.$z(3,18)=-52$

The boundaries give: $z(0,27)=2$ and $z(\sqrt{27},0)=2$. Hence, $z(3,18)=-52$ is a minimum and the corresponding shadow price is $\lambda=-3$.

Go on.
Antwoord 2 feedback
Wrong: $x\geq 0$ and $x=-\lambda$.

Try again.
Antwoord 3 feedback
Wrong: $y \neq 2\lambda$.

Try again.
Antwoord 4 feedback
Wrong: $y \neq 2\lambda$.

Try again.