- Maximize U(x,y)=x12y12
- Subject to8x+y=16
- Where x,y≥0
Antwoord 1 correct
Correct
Antwoord 2 optie
U(23,1023)=223
Antwoord 2 correct
Fout
Antwoord 3 optie
U(113,513)=223
Antwoord 3 correct
Fout
Antwoord 4 optie
U(4,4)=4
Antwoord 4 correct
Fout
Antwoord 1 optie
U(1,8)=√8
Antwoord 1 feedback
Correct: U′x(x,y)U′y(x,y)=12x−12y1212x12y−12=81 gives 8x=y. We plug this into the restriction: 8x+8x=16. Hence, x=1 and that gives y=8. U(1,8)=√8. We determine via the boundary points whether this is a maximum. U(2,0)=0 and U(0,16)=0 and hence U(1,8)=√8 is the maximum.
Go on.
Go on.
Antwoord 2 feedback
Wrong: U′x(x,y)U′y(x,y)=12x−12y1212x12y−12.
Try again.
Try again.
Antwoord 3 feedback
Wrong: U′x(x,y)U′y(x,y)=12x−12y1212x12y−12.
Try again.
Try again.
Antwoord 4 feedback
Wrong: (x,y)=(4,4) is not allowed, because 8⋅4+4≠16.
Try again.
Try again.