Determine the shadow price corresponding to the solution of the following constrained extremum problem.

  • Minimize z(x,y)=xy+2                      
  • Subject to x2+y=27
  • Where x,y0
λ=3
λ=1+12112
λ=112112
λ=3
Determine the shadow price corresponding to the solution of the following constrained extremum problem.

  • Minimize z(x,y)=xy+2                      
  • Subject to x2+y=27
  • Where x,y0
Antwoord 1 correct
Correct
Antwoord 2 optie
λ=3
Antwoord 2 correct
Fout
Antwoord 3 optie
λ=1+12112
Antwoord 3 correct
Fout
Antwoord 4 optie
λ=112112
Antwoord 4 correct
Fout
Antwoord 1 optie
λ=3
Antwoord 1 feedback
Correct: L(x,y,λ)=xy+2λ(x2+y27). We differentiate with respect to the variables x, y and λ:
  • Lx(x,y,λ)=y2λx,
  • Ly(x,y,λ)=xλ,
  • Lλ(x,y,λ)=x2y+27.
We put the first-order derivatives equal to zero and solve the system: Ly(x,y,λ)=xλ=0 gives x=λ. We plug this into Lx(x,y,λ)=y2λx=0 and that gives y=2λ2. We plug that into Lλ(x,y,λ)=x2y+27=0, which results in λ2=9, and hence, λ=3 or λ=3. Since x0 and x=λ it must hold that λ=3, x=3 and hence, y=18.z(3,18)=52

The boundaries give: z(0,27)=2 and z(27,0)=2. Hence, z(3,18)=52 is a minimum and the corresponding shadow price is λ=3.

Go on.
Antwoord 2 feedback
Wrong: x0 and x=λ.

Try again.
Antwoord 3 feedback
Wrong: y2λ.

Try again.
Antwoord 4 feedback
Wrong: y2λ.

Try again.