Determine the shadow price corresponding to the solution of the following constrained extremum problem.
- Minimize $z(x,y)=-xy+2$
- Subject to $x^2+y=27$
- Where $x,y\geq 0$
Antwoord 1 correct
Correct
Antwoord 2 optie
$\lambda=3$
Antwoord 2 correct
Fout
Antwoord 3 optie
$\lambda=-1+\frac{1}{2}\sqrt{112}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$\lambda=-1-\frac{1}{2}\sqrt{112}$
Antwoord 4 correct
Fout
Antwoord 1 optie
$\lambda=-3$
Antwoord 1 feedback
Correct: $L(x,y,\lambda)=-xy+2-\lambda(x^2+y-27)$. We differentiate with respect to the variables $x$, $y$ and $\lambda$:
The boundaries give: $z(0,27)=2$ and $z(\sqrt{27},0)=2$. Hence, $z(3,18)=-52$ is a minimum and the corresponding shadow price is $\lambda=-3$.
Go on.
-
$L'_x(x,y,\lambda)=-y-2\lambda x$,
-
$L'_y(x,y,\lambda)=-x-\lambda$,
- $L'_{\lambda}(x,y,\lambda)=-x^2-y+27$.
The boundaries give: $z(0,27)=2$ and $z(\sqrt{27},0)=2$. Hence, $z(3,18)=-52$ is a minimum and the corresponding shadow price is $\lambda=-3$.
Go on.
Antwoord 2 feedback
Wrong: $x\geq 0$ and $x=-\lambda$.
Try again.
Try again.
Antwoord 3 feedback
Wrong: $y \neq 2\lambda$.
Try again.
Try again.
Antwoord 4 feedback
Wrong: $y \neq 2\lambda$.
Try again.
Try again.