Determine the shadow price corresponding to the solution of the following constrained extremum problem.
- Minimize z(x,y)=−xy+2
- Subject to x2+y=27
- Where x,y≥0
Antwoord 1 correct
Correct
Antwoord 2 optie
λ=3
Antwoord 2 correct
Fout
Antwoord 3 optie
λ=−1+12√112
Antwoord 3 correct
Fout
Antwoord 4 optie
λ=−1−12√112
Antwoord 4 correct
Fout
Antwoord 1 optie
λ=−3
Antwoord 1 feedback
Correct: L(x,y,λ)=−xy+2−λ(x2+y−27). We differentiate with respect to the variables x, y and λ:
The boundaries give: z(0,27)=2 and z(√27,0)=2. Hence, z(3,18)=−52 is a minimum and the corresponding shadow price is λ=−3.
Go on.
-
L′x(x,y,λ)=−y−2λx,
-
L′y(x,y,λ)=−x−λ,
- L′λ(x,y,λ)=−x2−y+27.
The boundaries give: z(0,27)=2 and z(√27,0)=2. Hence, z(3,18)=−52 is a minimum and the corresponding shadow price is λ=−3.
Go on.
Antwoord 2 feedback
Wrong: x≥0 and x=−λ.
Try again.
Try again.
Antwoord 3 feedback
Wrong: y≠2λ.
Try again.
Try again.
Antwoord 4 feedback
Wrong: y≠2λ.
Try again.
Try again.