Introduction: A constrained extremum problem is given by
\[ L(x,y,\lambda)=z(x,y)-\lambda(g(x,y)-k),\]
and differentiate it with respect to $x$, $y$ and $\lambda$:
Remark 1: We have to check whether the extremum is a minimum or a maximum.
Remark 2: $\lambda$ can be interpreted as a 'shadow price'.
- Optimize $z(x,y)$
- Subject to $g(x,y)=k$
- Where $x \in D_1$, $y \in D_2$
\[ L(x,y,\lambda)=z(x,y)-\lambda(g(x,y)-k),\]
and differentiate it with respect to $x$, $y$ and $\lambda$:
-
$L'_x(x,y,\lambda)=z'_x(x,y)-\lambda\cdot g'_x(x,y)$
-
$L'_y(x,y,\lambda)=z'_y(x,y)-\lambda\cdot g'_y(x,y)$
- $L'_x(x,y,\lambda)= -g(x,y)+k$
Remark 1: We have to check whether the extremum is a minimum or a maximum.
Remark 2: $\lambda$ can be interpreted as a 'shadow price'.