Determine all the points of intersection of the graphs of y(x)=4x2+8x+3 and z(x)=2x2−5.
Antwoord 1 correct
Correct
Antwoord 2 optie
(−2+14√96,27−2√96) en (−2−14√96,27+2√96)
Antwoord 2 correct
Fout
Antwoord 3 optie
(−2+2√2,35−16√2) and (−2−2√2,35+16√2)
Antwoord 3 correct
Fout
Antwoord 4 optie
The graphs of these functions do not intersect.
Antwoord 4 correct
Fout
Antwoord 1 optie
(−2,3)
Antwoord 1 feedback
Correct: 4x2+8x+3=2x2−5⇔2x2+8x+8=0.
D=82−4⋅2⋅8=0.
Hence, the quadratic equation has one zero and the graphs intersect once. The zero is
x=−84=−2.
z(−2)=2⋅(−2)2−5=3.
Go on.
D=82−4⋅2⋅8=0.
Hence, the quadratic equation has one zero and the graphs intersect once. The zero is
x=−84=−2.
z(−2)=2⋅(−2)2−5=3.
Go on.
Antwoord 2 feedback
Wrong: Pay attention when rewriting the equation.
Try again.
Try again.
Antwoord 3 feedback
Antwoord 4 feedback