Determine all the points of intersection of the graphs of y(x)=4x2+8x+3 and z(x)=2x25.
(2,3)
(2+1496,27296) en (21496,27+296)
The graphs of these functions do not intersect.
(2+22,35162) and (222,35+162)
Determine all the points of intersection of the graphs of y(x)=4x2+8x+3 and z(x)=2x25.
Antwoord 1 correct
Correct
Antwoord 2 optie
(2+1496,27296) en (21496,27+296)
Antwoord 2 correct
Fout
Antwoord 3 optie
(2+22,35162) and (222,35+162)
Antwoord 3 correct
Fout
Antwoord 4 optie
The graphs of these functions do not intersect.
Antwoord 4 correct
Fout
Antwoord 1 optie
(2,3)
Antwoord 1 feedback
Correct: 4x2+8x+3=2x252x2+8x+8=0.

D=82428=0.

Hence, the quadratic equation has one zero and the graphs intersect once. The zero is

x=84=2.

z(2)=2(2)25=3.

Go on.
Antwoord 2 feedback
Wrong: Pay attention when rewriting the equation.

Try again.
Antwoord 3 feedback
Wrong: D=b24ac.

See Extra explanation: zeros.
Antwoord 4 feedback
Wrong: They do intersect.

See Extra explanation: zero.