Consider y(x)=2x2+4βx+β+3. Determine all the values of β such that the graph of y(x) does not intersect the x-axis.
14147<β<14+147
The correct answer is not among the other options.
1<β<112
All β
Consider y(x)=2x2+4βx+β+3. Determine all the values of β such that the graph of y(x) does not intersect the x-axis.
Antwoord 1 correct
Correct
Antwoord 2 optie
All β
Antwoord 2 correct
Fout
Antwoord 3 optie
14147<β<14+147
Antwoord 3 correct
Fout
Antwoord 4 optie
The correct answer is not among the other options.
Antwoord 4 correct
Fout
Antwoord 1 optie
1<β<112
Antwoord 1 feedback
Correct: y(x) does not intersect the x-axis when the discriminant D<0.

D(β)=(4β)242(β+3)=16β28β24.

We determine the zeros of D(β).

β1=8(8)241624216=1 and β2=8+(8)241624216=112.

Via a sign chart (with for instance D(2)=56, D(0)=24 and D(2)=24) we find D(β)<0 if 1<β<112.
Antwoord 2 feedback
Wrong: The discriminant of y(x) depends on β.

See Extra explanation: zeros or Example 3 (film).
Antwoord 3 feedback
Wrong: (4β)24β2.

Try again.
Antwoord 4 feedback
Wrong: The correct answer is among them.

See Extra explanation: zeros or Example 3 (film).