Consider y(x)=2x2+4βx+β+3. Determine all the values of β such that the graph of y(x) does not intersect the x-axis.
Antwoord 1 correct
Correct
Antwoord 2 optie
All β
Antwoord 2 correct
Fout
Antwoord 3 optie
14−14√7<β<14+14√7
Antwoord 3 correct
Fout
Antwoord 4 optie
The correct answer is not among the other options.
Antwoord 4 correct
Fout
Antwoord 1 optie
−1<β<112
Antwoord 1 feedback
Correct: y(x) does not intersect the x-axis when the discriminant D<0.
D(β)=(4β)2−4⋅2⋅(β+3)=16β2−8β−24.
We determine the zeros of D(β).
β1=8−√(−8)2−4⋅16⋅−242⋅16=−1 and β2=8+√(−8)2−4⋅16⋅−242⋅16=112.
Via a sign chart (with for instance D(−2)=56, D(0)=−24 and D(2)=24) we find D(β)<0 if −1<β<112.
D(β)=(4β)2−4⋅2⋅(β+3)=16β2−8β−24.
We determine the zeros of D(β).
β1=8−√(−8)2−4⋅16⋅−242⋅16=−1 and β2=8+√(−8)2−4⋅16⋅−242⋅16=112.
Via a sign chart (with for instance D(−2)=56, D(0)=−24 and D(2)=24) we find D(β)<0 if −1<β<112.
Antwoord 2 feedback
Antwoord 3 feedback
Wrong: (4β)2≠4β2.
Try again.
Try again.
Antwoord 4 feedback