Determine all zeros of the function $f(x)=5x^2-7x+3$.
This function has no zeros.
$x_1=\frac{7}{10}+\frac{1}{10}\sqrt{11}$ and $x_2=\frac{7}{10}-\frac{1}{10}\sqrt{11}$
$x_1=\frac{7}{10}+\frac{1}{10}\sqrt{109}$ and $x_2=\frac{7}{10}-\frac{1}{10}\sqrt{109}$
$x_1=-\frac{7}{10}+\frac{1}{10}\sqrt{11}$ and $x_2=-\frac{7}{10}-\frac{1}{10}\sqrt{11}$
Determine all zeros of the function $f(x)=5x^2-7x+3$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$x_1=\frac{7}{10}+\frac{1}{10}\sqrt{11}$ and $x_2=\frac{7}{10}-\frac{1}{10}\sqrt{11}$
Antwoord 2 correct
Fout
Antwoord 3 optie
$x_1=\frac{7}{10}+\frac{1}{10}\sqrt{109}$ and $x_2=\frac{7}{10}-\frac{1}{10}\sqrt{109}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$x_1=-\frac{7}{10}+\frac{1}{10}\sqrt{11}$ and $x_2=-\frac{7}{10}-\frac{1}{10}\sqrt{11}$
Antwoord 4 correct
Fout
Antwoord 1 optie
This function has no zeros.
Antwoord 1 feedback
Correct: $D=(-7)^2-4\cdot 5 \cdot 3=-11$. According to the discriminant criterion (See Extra explanation: zeros) this function has no zeros.

Go on.
Antwoord 2 feedback
Wrong: $D=(-7)^2-4\cdot 5 \cdot 3=-11$.

See Extra explanation: zeros.
Antwoord 3 feedback
Wrong: $D=(-7)^2-4\cdot 5 \cdot 3=-11$.

See Extra explanation: zeros.
Antwoord 4 feedback
Wrong: $D=(-7)^2-4\cdot 5 \cdot 3=-11$.

See Extra explanation: zeros.