We consider the functions f(x)=−3x2+x+4 and g(x)=5x−8. We determine all x such that f(x)≤g(x).
Step 1: Define h(x)
h(x)=f(x)−g(x)=(−3x2+x+4)−(5x−8)=−3x2−4x+12.
Step 2: Determine the zeros of h(x)
D=(−4)2−4⋅−3⋅12=160.
x1=4+√1282⋅−3=−23−23√10, and
x2=4−√1282⋅−3=−23+23√10.
Step 3: Make a sign chart
The following sign chart of h(x) follows from h(−10)=−248, h(0)=12 and h(5)=−83.
Step 4: Observe the sign chart
If follows from the sign chart that for x≤−23−23√10 and x≥−23+23√10 it holds that f(x)≤g(x).