Solve 3xx1x+4, (x>1).

1<x2+11

211x2+11

211x<1

x>1

Solve 3xx1x+4, (x>1).

Antwoord 1 correct
Correct
Antwoord 2 optie

211x2+11

Antwoord 2 correct
Fout
Antwoord 3 optie

x>1

Antwoord 3 correct
Fout
Antwoord 4 optie

211x<1

Antwoord 4 correct
Fout
Antwoord 1 optie

1<x2+11

Antwoord 1 feedback

Correct: 3xx1x+4, where x>13xx14x0.

We define f(x)=3xx14x and solve f(x)=0:
3xx14x=03x+(x1)(x4)=0x24x+7=0x2+4x7=0x=211 or x=2+11.

Note that x=211 is outside the domain. Via a sign chart we find f(x)0 if 1<x2+11.

Go on.

Antwoord 2 feedback

Wrong: Consider the domain of the function.

Try again.

Antwoord 3 feedback

Wrong: Determine the points of intersection.

See Example 2 (film).

Antwoord 4 feedback

Wrong: Consider the domain of the function.

Try again.