Solve $7x^2-4x+2 > -3x^2+5x$.
$x< \frac{2}{5}$ or $x>\frac{1}{2}$
$\frac{2}{5}$
$\frac{4}{5}$
$x< \frac{4}{5}$ or $x>1$
Solve $7x^2-4x+2 > -3x^2+5x$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$\frac{2}{5}$
Antwoord 2 correct
Fout
Antwoord 3 optie
$\frac{4}{5}$
Antwoord 3 correct
Fout
Antwoord 4 optie
$x< \frac{4}{5}$ or $x>1$
Antwoord 4 correct
Fout
Antwoord 1 optie
$x< \frac{2}{5}$ or $x>\frac{1}{2}$
Antwoord 1 feedback
Correct: $7x^2-4x+2 > -3x^2+5x \Leftrightarrow 10x^2-9x+2 > 0$.

Define $f(x)=10x^2-9x+2$. We determine the zeros of $f(x)$, hence we solve $f(x)=0$:

$D=9^2 - 4\cdot 10 \cdot 2 = 1$.

Hence, $x=\frac{2}{5}$ or $x=\frac{1}{2}$.

Via the sign chart (with for instance $f(0)=2$, $f(\frac{9}{20})=-0.025$ and $f(1)=3)$ we find $x< \frac{2}{5}$ or $x>\frac{1}{2}$.

Go on.
Antwoord 2 feedback
Wrong: Pay attention to the sign chart.

See Example 2 (film).
Antwoord 3 feedback
Wrong: $x=\frac{-b\pm\sqrt{D}}{2a}$.

See Extra explanation: zeros.
Antwoord 4 feedback
Wrong: $x=\frac{-b\pm\sqrt{D}}{2a}$.

See Extra explanation: zeros.