Determine all the points of intersection of the graphs of $y(x)=4x^2+8x+3$ and $z(x)=2x^2-5$.
$(-2,3)$
$(-2+\frac{1}{4}\sqrt{96},27-2\sqrt{96})$ en $(-2-\frac{1}{4}\sqrt{96},27+2\sqrt{96})$
$(-2+2\sqrt{2},35-16\sqrt{2})$ and $(-2-2\sqrt{2},35+16\sqrt{2})$
The graphs of these functions do not intersect.
Determine all the points of intersection of the graphs of $y(x)=4x^2+8x+3$ and $z(x)=2x^2-5$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$(-2+\frac{1}{4}\sqrt{96},27-2\sqrt{96})$ en $(-2-\frac{1}{4}\sqrt{96},27+2\sqrt{96})$
Antwoord 2 correct
Fout
Antwoord 3 optie
$(-2+2\sqrt{2},35-16\sqrt{2})$ and $(-2-2\sqrt{2},35+16\sqrt{2})$
Antwoord 3 correct
Fout
Antwoord 4 optie
The graphs of these functions do not intersect.
Antwoord 4 correct
Fout
Antwoord 1 optie
$(-2,3)$
Antwoord 1 feedback
Correct: $4x^2+8x+3 =2x^2-5  \Leftrightarrow 2x^2+8x+8=0.$

$D=8^2-4\cdot 2 \cdot 8=0$.

Hence, the quadratic equation has one zero and the graphs intersect once. The zero is

$x=-\frac{8}{4}=-2$.

$z(-2)=2\cdot (-2)^2-5=3$.

Go on.
Antwoord 2 feedback
Wrong: Pay attention when rewriting the equation.

Try again.
Antwoord 3 feedback
Wrong: $D=b^2-4\cdot a \cdot c$.

See Extra explanation: zeros.
Antwoord 4 feedback
Wrong: They do intersect.

See Extra explanation: zero.