$y(x)=5^{3x^2+2}$. Bepaal $y''(x)$.
Antwoord 1 correct
Correct
Antwoord 2 optie
$y''(x)=6\cdot 5^{3x^2+2}\cdot (1+\cdot 6 x^2)$
Antwoord 2 correct
Fout
Antwoord 3 optie
$y''(x)=5^{3x^2+2}\cdot (\textrm{ln}(5))^2$
Antwoord 3 correct
Fout
Antwoord 4 optie
$y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot x)$
Antwoord 4 correct
Fout
Antwoord 1 optie
$y''(x)=6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6 x^2)$
Antwoord 1 feedback
Correct: $y'(x)=5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6x$, en
$$\begin{align*}
y''(x) & =5^{3x^2+2}\cdot (\textrm{ln}(5))^2\cdot 6x \cdot 6x+5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6\\
& =6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6x^2).
\end{align*}$$
Ga door.
$$\begin{align*}
y''(x) & =5^{3x^2+2}\cdot (\textrm{ln}(5))^2\cdot 6x \cdot 6x+5^{3x^2+2}\cdot \textrm{ln}(5)\cdot 6\\
& =6\cdot 5^{3x^2+2}\cdot \textrm{ln}(5)\cdot (1+\textrm{ln}(5) \cdot 6x^2).
\end{align*}$$
Ga door.
Antwoord 2 feedback
Antwoord 3 feedback
Antwoord 4 feedback
Fout: Denk ook aan de kettingregel bij het differentiëren van de eerste orde afgeleide.
Probeer de opgave nogmaals.
Probeer de opgave nogmaals.